home *** CD-ROM | disk | FTP | other *** search
/ Interactive Algebra & Tri…f Guided Study Companion / Interactive Algebra and Trigonometry - A Self-Guided Study Companion.iso / tutor / chap_1 / 1-index.tut < prev    next >
Unknown  |  1996-07-15  |  5.4 KB

open in: MacOS 8.1     |     Win98     |     DOS

view JSON data     |     view as text


This file was not able to be converted.
This format is not currently supported by dexvert.

ConfidenceProgramDetectionMatch TypeSupport
1% dexvert Eclipse Tutorial (other/eclipseTutorial) ext Unsupported
1% dexvert JuggleKrazy Tutorial (other/juggleKrazyTutorial) ext Unsupported
100% file data default
100% gt2 Kopftext: 'TUTOR 06Y' default (weak)



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 54 55 54 4f 52 20 30 36 | 59 15 00 00 19 00 00 00 |TUTOR 06|Y.......|
|00000010| 47 6c 6f 73 73 61 72 79 | 20 66 6f 72 20 43 68 61 |Glossary| for Cha|
|00000020| 70 74 65 72 20 31 10 31 | 2d 37 2d 31 0e 73 31 2d |pter 1.1|-7-1.s1-|
|00000030| 37 2d 34 0e 41 62 73 6f | 6c 75 74 65 20 56 61 6c |7-4.Abso|lute Val|
|00000040| 75 65 20 49 6e 65 71 75 | 61 6c 69 74 69 65 73 0f |ue Inequ|alities.|
|00000050| 0d 0a 00 10 31 2d 37 2d | 31 0e 73 31 2d 37 2d 32 |....1-7-|1.s1-7-2|
|00000060| 0e 41 64 64 69 74 69 6f | 6e 20 6f 66 20 61 20 43 |.Additio|n of a C|
|00000070| 6f 6e 73 74 61 6e 74 0f | 0d 0a 00 10 31 2d 37 2d |onstant.|....1-7-|
|00000080| 31 0e 73 31 2d 37 2d 32 | 0e 41 64 64 69 74 69 6f |1.s1-7-2|.Additio|
|00000090| 6e 20 6f 66 20 49 6e 65 | 71 75 61 6c 69 74 69 65 |n of Ine|qualitie|
|000000a0| 73 0f 0d 0a 00 10 31 2d | 33 2d 31 0e 73 31 2d 33 |s.....1-|3-1.s1-3|
|000000b0| 2d 31 0e 41 6c 67 65 62 | 72 61 69 63 20 45 71 75 |-1.Algeb|raic Equ|
|000000c0| 61 74 69 6f 6e 0f 0d 0a | 00 10 31 2d 37 2d 31 0e |ation...|..1-7-1.|
|000000d0| 73 31 2d 37 2d 31 0e 41 | 6c 67 65 62 72 61 69 63 |s1-7-1.A|lgebraic|
|000000e0| 20 49 6e 65 71 75 61 6c | 69 74 69 65 73 0f 0d 0a | Inequal|ities...|
|000000f0| 00 10 31 2d 34 2d 31 0e | 73 31 2d 34 2d 35 0e 41 |..1-4-1.|s1-4-5.A|
|00000100| 70 70 6c 69 63 61 74 69 | 6f 6e 73 20 49 6e 76 6f |pplicati|ons Invo|
|00000110| 6c 76 69 6e 67 20 51 75 | 61 64 72 61 74 69 63 20 |lving Qu|adratic |
|00000120| 45 71 75 61 74 69 6f 6e | 73 0f 0d 0a 00 10 31 2d |Equation|s.....1-|
|00000130| 33 2d 31 0e 73 31 2d 33 | 2d 33 0e 41 72 65 61 20 |3-1.s1-3|-3.Area |
|00000140| 46 6f 72 6d 75 6c 61 73 | 0f 0d 0a 00 10 31 2d 31 |Formulas|.....1-1|
|00000150| 2d 31 0e 73 31 2d 31 2d | 35 0e 43 65 6e 74 65 72 |-1.s1-1-|5.Center|
|00000160| 20 6f 66 20 61 20 43 69 | 72 63 6c 65 0f 0d 0a 00 | of a Ci|rcle....|
|00000170| 10 31 2d 33 2d 31 0e 73 | 31 2d 33 2d 33 0e 43 69 |.1-3-1.s|1-3-3.Ci|
|00000180| 72 63 6c 65 2c 20 41 72 | 65 61 20 61 6e 64 20 43 |rcle, Ar|ea and C|
|00000190| 69 72 63 75 6d 66 65 72 | 65 6e 63 65 20 6f 66 20 |ircumfer|ence of |
|000001a0| 61 0f 0d 0a 00 10 31 2d | 31 2d 31 0e 73 31 2d 31 |a.....1-|1-1.s1-1|
|000001b0| 2d 35 0e 43 69 72 63 6c | 65 2c 20 45 71 75 61 74 |-5.Circl|e, Equat|
|000001c0| 69 6f 6e 20 6f 66 20 61 | 0f 0d 0a 00 10 31 2d 33 |ion of a|.....1-3|
|000001d0| 2d 31 0e 73 31 2d 33 2d | 34 0e 43 69 72 63 75 6c |-1.s1-3-|4.Circul|
|000001e0| 61 72 20 43 79 6c 69 6e | 64 65 72 2c 20 56 6f 6c |ar Cylin|der, Vol|
|000001f0| 75 6d 65 20 6f 66 20 61 | 0f 0d 0a 00 10 31 2d 36 |ume of a|.....1-6|
|00000200| 2d 31 0e 73 31 2d 36 2d | 33 0e 43 6c 65 61 72 69 |-1.s1-6-|3.Cleari|
|00000210| 6e 67 20 61 6e 20 45 71 | 75 61 74 69 6f 6e 20 6f |ng an Eq|uation o|
|00000220| 66 20 46 72 61 63 74 69 | 6f 6e 73 0f 0d 0a 00 10 |f Fracti|ons.....|
|00000230| 31 2d 33 2d 31 0e 73 31 | 2d 33 2d 35 0e 43 6f 6d |1-3-1.s1|-3-5.Com|
|00000240| 6d 6f 6e 20 46 6f 72 6d | 75 6c 61 73 2c 20 4d 69 |mon Form|ulas, Mi|
|00000250| 73 63 65 6c 6c 61 6e 65 | 6f 75 73 0f 0d 0a 00 10 |scellane|ous.....|
|00000260| 31 2d 33 2d 31 0e 73 31 | 2d 33 2d 33 0e 43 6f 6d |1-3-1.s1|-3-3.Com|
|00000270| 6d 6f 6e 20 46 6f 72 6d | 75 6c 61 73 20 66 6f 72 |mon Form|ulas for|
|00000280| 20 41 72 65 61 20 61 6e | 64 20 50 65 72 69 6d 65 | Area an|d Perime|
|00000290| 74 65 72 0f 0d 0a 00 10 | 31 2d 33 2d 31 0e 73 31 |ter.....|1-3-1.s1|
|000002a0| 2d 33 2d 34 0e 43 6f 6d | 6d 6f 6e 20 46 6f 72 6d |-3-4.Com|mon Form|
|000002b0| 75 6c 61 73 20 66 6f 72 | 20 56 6f 6c 75 6d 65 0f |ulas for| Volume.|
|000002c0| 0d 0a 00 10 31 2d 31 2d | 31 0e 73 31 2d 31 2d 35 |....1-1-|1.s1-1-5|
|000002d0| 0e 43 6f 6d 70 6c 65 74 | 69 6e 67 20 74 68 65 20 |.Complet|ing the |
|000002e0| 53 71 75 61 72 65 0f 0d | 0a 00 10 31 2d 35 2d 31 |Square..|...1-5-1|
|000002f0| 0e 73 31 2d 35 2d 34 0e | 43 6f 6d 70 6c 65 78 20 |.s1-5-4.|Complex |
|00000300| 43 6f 6e 6a 75 67 61 74 | 65 73 0f 0d 0a 00 10 31 |Conjugat|es.....1|
|00000310| 2d 35 2d 31 0e 73 31 2d | 35 2d 31 0e 43 6f 6d 70 |-5-1.s1-|5-1.Comp|
|00000320| 6c 65 78 20 4e 75 6d 62 | 65 72 73 0f 0d 0a 00 10 |lex Numb|ers.....|
|00000330| 31 2d 33 2d 31 0e 73 31 | 2d 33 2d 35 0e 43 6f 6d |1-3-1.s1|-3-5.Com|
|00000340| 70 6f 75 6e 64 20 49 6e | 74 65 72 65 73 74 20 46 |pound In|terest F|
|00000350| 6f 72 6d 75 6c 61 0f 0d | 0a 00 10 31 2d 32 2d 31 |ormula..|...1-2-1|
|00000360| 0e 73 31 2d 32 2d 31 0e | 43 6f 6e 64 69 74 69 6f |.s1-2-1.|Conditio|
|00000370| 6e 61 6c 20 45 71 75 61 | 74 69 6f 6e 0f 0d 0a 00 |nal Equa|tion....|
|00000380| 10 31 2d 38 2d 31 0e 73 | 31 2d 38 2d 31 0e 43 72 |.1-8-1.s|1-8-1.Cr|
|00000390| 69 74 69 63 61 6c 20 4e | 75 6d 62 65 72 73 20 6f |itical N|umbers o|
|000003a0| 66 20 61 20 50 6f 6c 79 | 6e 6f 6d 69 61 6c 20 49 |f a Poly|nomial I|
|000003b0| 6e 65 71 75 61 6c 69 74 | 79 0f 0d 0a 00 10 31 2d |nequalit|y.....1-|
|000003c0| 38 2d 31 0e 73 31 2d 38 | 2d 33 0e 43 72 69 74 69 |8-1.s1-8|-3.Criti|
|000003d0| 63 61 6c 20 4e 75 6d 62 | 65 72 73 20 6f 66 20 61 |cal Numb|ers of a|
|000003e0| 20 52 61 74 69 6f 6e 61 | 6c 20 49 6e 65 71 75 61 | Rationa|l Inequa|
|000003f0| 6c 69 74 79 0f 0d 0a 00 | 10 31 2d 32 2d 31 0e 73 |lity....|.1-2-1.s|
|00000400| 31 2d 32 2d 34 0e 43 72 | 6f 73 73 20 4d 75 6c 74 |1-2-4.Cr|oss Mult|
|00000410| 69 70 6c 79 69 6e 67 0f | 0d 0a 00 10 31 2d 33 2d |iplying.|....1-3-|
|00000420| 31 0e 73 31 2d 33 2d 34 | 0e 43 75 62 65 2c 20 56 |1.s1-3-4|.Cube, V|
|00000430| 6f 6c 75 6d 65 20 6f 66 | 20 61 0f 0d 0a 00 10 31 |olume of| a.....1|
|00000440| 2d 31 2d 31 0e 73 31 2d | 31 2d 33 0e 44 65 66 69 |-1-1.s1-|1-3.Defi|
|00000450| 6e 69 74 69 6f 6e 20 6f | 66 20 49 6e 74 65 72 63 |nition o|f Interc|
|00000460| 65 70 74 73 0f 0d 0a 00 | 10 31 2d 34 2d 31 0e 73 |epts....|.1-4-1.s|
|00000470| 31 2d 34 2d 36 0e 44 69 | 73 63 72 69 6d 69 6e 61 |1-4-6.Di|scrimina|
|00000480| 6e 74 0f 0d 0a 00 10 31 | 2d 33 2d 31 0e 73 31 2d |nt.....1|-3-1.s1-|
|00000490| 33 2d 35 0e 44 69 73 74 | 61 6e 63 65 20 46 6f 72 |3-5.Dist|ance For|
|000004a0| 6d 75 6c 61 0f 0d 0a 00 | 10 31 2d 35 2d 31 0e 73 |mula....|.1-5-1.s|
|000004b0| 31 2d 35 2d 34 0e 44 69 | 76 69 64 69 6e 67 20 62 |1-5-4.Di|viding b|
|000004c0| 79 20 61 20 43 6f 6d 70 | 6c 65 78 20 4e 75 6d 62 |y a Comp|lex Numb|
|000004d0| 65 72 0f 0d 0a 00 10 31 | 2d 37 2d 31 0e 73 31 2d |er.....1|-7-1.s1-|
|000004e0| 37 2d 33 0e 44 6f 75 62 | 6c 65 20 49 6e 65 71 75 |7-3.Doub|le Inequ|
|000004f0| 61 6c 69 74 79 0f 0d 0a | 00 10 31 2d 34 2d 31 0e |ality...|..1-4-1.|
|00000500| 73 31 2d 34 2d 32 0e 44 | 6f 75 62 6c 65 20 53 6f |s1-4-2.D|ouble So|
|00000510| 6c 75 74 69 6f 6e 0f 0d | 0a 00 10 31 2d 32 2d 31 |lution..|...1-2-1|
|00000520| 0e 73 31 2d 32 2d 31 0e | 45 71 75 61 74 69 6f 6e |.s1-2-1.|Equation|
|00000530| 0f 0d 0a 00 10 31 2d 33 | 2d 31 0e 73 31 2d 33 2d |.....1-3|-1.s1-3-|
|00000540| 31 0e 45 71 75 61 74 69 | 6f 6e 2c 20 41 6c 67 65 |1.Equati|on, Alge|
|00000550| 62 72 61 69 63 0f 0d 0a | 00 10 31 2d 34 2d 31 0e |braic...|..1-4-1.|
|00000560| 73 31 2d 34 2d 31 0e 45 | 71 75 61 74 69 6f 6e 2c |s1-4-1.E|quation,|
|00000570| 20 51 75 61 64 72 61 74 | 69 63 0f 0d 0a 00 10 31 | Quadrat|ic.....1|
|00000580| 2d 32 2d 31 0e 73 31 2d | 32 2d 33 0e 45 71 75 61 |-2-1.s1-|2-3.Equa|
|00000590| 74 69 6f 6e 73 2c 20 45 | 71 75 69 76 61 6c 65 6e |tions, E|quivalen|
|000005a0| 74 0f 0d 0a 00 10 31 2d | 32 2d 31 0e 73 31 2d 32 |t.....1-|2-1.s1-2|
|000005b0| 2d 34 0e 45 71 75 61 74 | 69 6f 6e 73 20 49 6e 76 |-4.Equat|ions Inv|
|000005c0| 6f 6c 76 69 6e 67 20 46 | 72 61 63 74 69 6f 6e 61 |olving F|ractiona|
|000005d0| 6c 20 45 78 70 72 65 73 | 73 69 6f 6e 73 0f 0d 0a |l Expres|sions...|
|000005e0| 00 10 31 2d 32 2d 31 0e | 73 31 2d 32 2d 33 0e 45 |..1-2-1.|s1-2-3.E|
|000005f0| 71 75 69 76 61 6c 65 6e | 74 20 45 71 75 61 74 69 |quivalen|t Equati|
|00000600| 6f 6e 73 0f 0d 0a 00 10 | 31 2d 37 2d 31 0e 73 31 |ons.....|1-7-1.s1|
|00000610| 2d 37 2d 33 0e 45 71 75 | 69 76 61 6c 65 6e 74 20 |-7-3.Equ|ivalent |
|00000620| 49 6e 65 71 75 61 6c 69 | 74 69 65 73 0f 0d 0a 00 |Inequali|ties....|
|00000630| 10 31 2d 34 2d 31 0e 73 | 31 2d 34 2d 33 0e 45 78 |.1-4-1.s|1-4-3.Ex|
|00000640| 74 72 61 63 74 69 6e 67 | 20 53 71 75 61 72 65 20 |tracting| Square |
|00000650| 52 6f 6f 74 73 0f 0d 0a | 00 10 31 2d 32 2d 31 0e |Roots...|..1-2-1.|
|00000660| 73 31 2d 32 2d 34 0e 45 | 78 74 72 61 6e 65 6f 75 |s1-2-4.E|xtraneou|
|00000670| 73 20 53 6f 6c 75 74 69 | 6f 6e 0f 0d 0a 00 10 31 |s Soluti|on.....1|
|00000680| 2d 34 2d 31 0e 73 31 2d | 34 2d 32 0e 46 61 63 74 |-4-1.s1-|4-2.Fact|
|00000690| 6f 72 69 6e 67 0f 0d 0a | 00 10 31 2d 38 2d 31 0e |oring...|..1-8-1.|
|000006a0| 73 31 2d 38 2d 32 0e 46 | 69 6e 64 69 6e 67 20 54 |s1-8-2.F|inding T|
|000006b0| 65 73 74 20 49 6e 74 65 | 72 76 61 6c 73 20 66 6f |est Inte|rvals fo|
|000006c0| 72 20 61 20 50 6f 6c 79 | 6e 6f 6d 69 61 6c 0f 0d |r a Poly|nomial..|
|000006d0| 0a 00 10 31 2d 33 2d 31 | 0e 73 31 2d 33 2d 33 0e |...1-3-1|.s1-3-3.|
|000006e0| 46 6f 72 6d 75 6c 61 73 | 0f 0d 0a 00 10 31 2d 32 |Formulas|.....1-2|
|000006f0| 2d 31 0e 73 31 2d 32 2d | 33 0e 47 65 6e 65 72 61 |-1.s1-2-|3.Genera|
|00000700| 74 69 6e 67 20 45 71 75 | 69 76 61 6c 65 6e 74 20 |ting Equ|ivalent |
|00000710| 45 71 75 61 74 69 6f 6e | 73 0f 0d 0a 00 10 31 2d |Equation|s.....1-|
|00000720| 31 2d 31 0e 73 31 2d 31 | 2d 31 0e 47 72 61 70 68 |1-1.s1-1|-1.Graph|
|00000730| 20 6f 66 20 61 6e 20 45 | 71 75 61 74 69 6f 6e 0f | of an E|quation.|
|00000740| 0d 0a 00 10 31 2d 37 2d | 31 0e 73 31 2d 37 2d 31 |....1-7-|1.s1-7-1|
|00000750| 0e 47 72 61 70 68 20 6f | 66 20 61 6e 20 49 6e 65 |.Graph o|f an Ine|
|00000760| 71 75 61 6c 69 74 79 0f | 0d 0a 00 10 31 2d 33 2d |quality.|....1-3-|
|00000770| 31 0e 73 31 2d 33 2d 31 | 0e 48 69 64 64 65 6e 20 |1.s1-3-1|.Hidden |
|00000780| 45 71 75 61 6c 69 74 79 | 0f 0d 0a 00 10 31 2d 32 |Equality|.....1-2|
|00000790| 2d 31 0e 73 31 2d 32 2d | 31 0e 49 64 65 6e 74 69 |-1.s1-2-|1.Identi|
|000007a0| 74 79 0f 0d 0a 00 10 31 | 2d 35 2d 31 0e 73 31 2d |ty.....1|-5-1.s1-|
|000007b0| 35 2d 31 0e 49 6d 61 67 | 69 6e 61 72 79 20 55 6e |5-1.Imag|inary Un|
|000007c0| 69 74 20 11 33 69 11 31 | 0f 0d 0a 00 10 31 2d 38 |it .3i.1|.....1-8|
|000007d0| 2d 31 0e 73 31 2d 38 2d | 33 0e 49 6e 65 71 75 61 |-1.s1-8-|3.Inequa|
|000007e0| 6c 69 74 69 65 73 20 49 | 6e 76 6f 6c 76 69 6e 67 |lities I|nvolving|
|000007f0| 20 52 61 74 69 6f 6e 61 | 6c 20 45 78 70 72 65 73 | Rationa|l Expres|
|00000800| 73 69 6f 6e 73 0f 0d 0a | 00 10 31 2d 31 2d 31 0e |sions...|..1-1-1.|
|00000810| 73 31 2d 31 2d 33 0e 49 | 6e 74 65 72 63 65 70 74 |s1-1-3.I|ntercept|
|00000820| 73 20 6f 66 20 61 20 47 | 72 61 70 68 0f 0d 0a 00 |s of a G|raph....|
|00000830| 10 31 2d 32 2d 31 0e 73 | 31 2d 32 2d 32 0e 4c 69 |.1-2-1.s|1-2-2.Li|
|00000840| 6e 65 61 72 20 45 71 75 | 61 74 69 6f 6e 20 69 6e |near Equ|ation in|
|00000850| 20 4f 6e 65 20 56 61 72 | 69 61 62 6c 65 0f 0d 0a | One Var|iable...|
|00000860| 00 10 31 2d 37 2d 31 0e | 73 31 2d 37 2d 33 0e 4c |..1-7-1.|s1-7-3.L|
|00000870| 69 6e 65 61 72 20 49 6e | 65 71 75 61 6c 69 74 69 |inear In|equaliti|
|00000880| 65 73 0f 0d 0a 00 10 31 | 2d 33 2d 31 0e 73 31 2d |es.....1|-3-1.s1-|
|00000890| 33 2d 31 0e 4d 61 74 68 | 65 6d 61 74 69 63 61 6c |3-1.Math|ematical|
|000008a0| 20 4d 6f 64 65 6c 0f 0d | 0a 00 10 31 2d 33 2d 31 | Model..|...1-3-1|
|000008b0| 0e 73 31 2d 33 2d 31 0e | 4d 61 74 68 65 6d 61 74 |.s1-3-1.|Mathemat|
|000008c0| 69 63 61 6c 20 4d 6f 64 | 65 6c 69 6e 67 0f 0d 0a |ical Mod|eling...|
|000008d0| 00 10 31 2d 33 2d 31 0e | 73 31 2d 33 2d 35 0e 4d |..1-3-1.|s1-3-5.M|
|000008e0| 69 73 63 65 6c 6c 61 6e | 65 6f 75 73 20 43 6f 6d |iscellan|eous Com|
|000008f0| 6d 6f 6e 20 46 6f 72 6d | 75 6c 61 73 0f 0d 0a 00 |mon Form|ulas....|
|00000900| 10 31 2d 37 2d 31 0e 73 | 31 2d 37 2d 32 0e 4d 75 |.1-7-1.s|1-7-2.Mu|
|00000910| 6c 74 69 70 6c 79 69 6e | 67 20 61 6e 20 49 6e 65 |ltiplyin|g an Ine|
|00000920| 71 75 61 6c 69 74 79 20 | 62 79 20 61 20 43 6f 6e |quality |by a Con|
|00000930| 73 74 61 6e 74 0f 0d 0a | 00 10 31 2d 35 2d 31 0e |stant...|..1-5-1.|
|00000940| 73 31 2d 35 2d 33 0e 4d | 75 6c 74 69 70 6c 79 69 |s1-5-3.M|ultiplyi|
|00000950| 6e 67 20 43 6f 6d 70 6c | 65 78 20 4e 75 6d 62 65 |ng Compl|ex Numbe|
|00000960| 72 73 0f 0d 0a 00 10 31 | 2d 31 2d 31 0e 73 31 2d |rs.....1|-1-1.s1-|
|00000970| 31 2d 34 0e 4f 72 69 67 | 69 6e 20 53 79 6d 6d 65 |1-4.Orig|in Symme|
|00000980| 74 72 79 0f 0d 0a 00 10 | 31 2d 33 2d 31 0e 73 31 |try.....|1-3-1.s1|
|00000990| 2d 33 2d 33 0e 50 65 72 | 69 6d 65 74 65 72 20 46 |-3-3.Per|imeter F|
|000009a0| 6f 72 6d 75 6c 61 73 0f | 0d 0a 00 10 31 2d 31 2d |ormulas.|....1-1-|
|000009b0| 31 0e 73 31 2d 31 2d 32 | 0e 50 6f 69 6e 74 2d 70 |1.s1-1-2|.Point-p|
|000009c0| 6c 6f 74 74 69 6e 67 20 | 4d 65 74 68 6f 64 20 6f |lotting |Method o|
|000009d0| 66 20 47 72 61 70 68 69 | 6e 67 0f 0d 0a 00 10 31 |f Graphi|ng.....1|
|000009e0| 2d 38 2d 31 0e 73 31 2d | 38 2d 31 0e 50 6f 6c 79 |-8-1.s1-|8-1.Poly|
|000009f0| 6e 6f 6d 69 61 6c 20 49 | 6e 65 71 75 61 6c 69 74 |nomial I|nequalit|
|00000a00| 79 0f 0d 0a 00 10 31 2d | 34 2d 31 0e 73 31 2d 34 |y.....1-|4-1.s1-4|
|00000a10| 2d 35 0e 50 6f 73 69 74 | 69 6f 6e 20 45 71 75 61 |-5.Posit|ion Equa|
|00000a20| 74 69 6f 6e 0f 0d 0a 00 | 10 31 2d 35 2d 31 0e 73 |tion....|.1-5-1.s|
|00000a30| 31 2d 35 2d 36 0e 50 6f | 77 65 72 73 20 6f 66 20 |1-5-6.Po|wers of |
|00000a40| 11 33 69 11 31 0f 0d 0a | 00 10 31 2d 35 2d 31 0e |.3i.1...|..1-5-1.|
|00000a50| 73 31 2d 35 2d 35 0e 50 | 72 69 6e 63 69 70 61 6c |s1-5-5.P|rincipal|
|00000a60| 20 53 71 75 61 72 65 20 | 52 6f 6f 74 20 6f 66 20 | Square |Root of |
|00000a70| 61 20 4e 65 67 61 74 69 | 76 65 20 4e 75 6d 62 65 |a Negati|ve Numbe|
|00000a80| 72 0f 0d 0a 00 10 31 2d | 37 2d 31 0e 73 31 2d 37 |r.....1-|7-1.s1-7|
|00000a90| 2d 32 0e 50 72 6f 70 65 | 72 74 69 65 73 20 6f 66 |-2.Prope|rties of|
|00000aa0| 20 49 6e 65 71 75 61 6c | 69 74 69 65 73 0f 0d 0a | Inequal|ities...|
|00000ab0| 00 10 31 2d 35 2d 31 0e | 73 31 2d 35 2d 31 0e 50 |..1-5-1.|s1-5-1.P|
|00000ac0| 75 72 65 20 49 6d 61 67 | 69 6e 61 72 79 20 4e 75 |ure Imag|inary Nu|
|00000ad0| 6d 62 65 72 0f 0d 0a 00 | 10 31 2d 34 2d 31 0e 73 |mber....|.1-4-1.s|
|00000ae0| 31 2d 34 2d 35 0e 50 79 | 74 68 61 67 6f 72 65 61 |1-4-5.Py|thagorea|
|00000af0| 6e 20 54 68 65 6f 72 65 | 6d 0f 0d 0a 00 10 31 2d |n Theore|m.....1-|
|00000b00| 34 2d 31 0e 73 31 2d 34 | 2d 31 0e 51 75 61 64 72 |4-1.s1-4|-1.Quadr|
|00000b10| 61 74 69 63 20 45 71 75 | 61 74 69 6f 6e 0f 0d 0a |atic Equ|ation...|
|00000b20| 00 10 31 2d 34 2d 31 0e | 73 31 2d 34 2d 37 0e 51 |..1-4-1.|s1-4-7.Q|
|00000b30| 75 61 64 72 61 74 69 63 | 20 45 71 75 61 74 69 6f |uadratic| Equatio|
|00000b40| 6e 2c 20 53 6f 6c 75 74 | 69 6f 6e 73 20 6f 66 20 |n, Solut|ions of |
|00000b50| 61 0f 0d 0a 00 10 31 2d | 34 2d 31 0e 73 31 2d 34 |a.....1-|4-1.s1-4|
|00000b60| 2d 36 0e 51 75 61 64 72 | 61 74 69 63 20 46 6f 72 |-6.Quadr|atic For|
|00000b70| 6d 75 6c 61 0f 0d 0a 00 | 10 31 2d 36 2d 31 0e 73 |mula....|.1-6-1.s|
|00000b80| 31 2d 36 2d 31 0e 51 75 | 61 64 72 61 74 69 63 20 |1-6-1.Qu|adratic |
|00000b90| 54 79 70 65 0f 0d 0a 00 | 10 31 2d 31 2d 31 0e 73 |Type....|.1-1-1.s|
|00000ba0| 31 2d 31 2d 35 0e 52 61 | 64 69 75 73 20 6f 66 20 |1-1-5.Ra|dius of |
|00000bb0| 61 20 43 69 72 63 6c 65 | 0f 0d 0a 00 10 31 2d 38 |a Circle|.....1-8|
|00000bc0| 2d 31 0e 73 31 2d 38 2d | 33 0e 52 61 74 69 6f 6e |-1.s1-8-|3.Ration|
|00000bd0| 61 6c 20 49 6e 65 71 75 | 61 6c 69 74 79 2c 20 43 |al Inequ|ality, C|
|00000be0| 72 69 74 69 63 61 6c 20 | 4e 75 6d 62 65 72 73 20 |ritical |Numbers |
|00000bf0| 6f 66 20 61 0f 0d 0a 00 | 10 31 2d 33 2d 31 0e 73 |of a....|.1-3-1.s|
|00000c00| 31 2d 33 2d 33 0e 52 65 | 63 74 61 6e 67 6c 65 2c |1-3-3.Re|ctangle,|
|00000c10| 20 41 72 65 61 20 61 6e | 64 20 50 65 72 69 6d 65 | Area an|d Perime|
|00000c20| 74 65 72 20 6f 66 20 61 | 0f 0d 0a 00 10 31 2d 33 |ter of a|.....1-3|
|00000c30| 2d 31 0e 73 31 2d 33 2d | 34 0e 52 65 63 74 61 6e |-1.s1-3-|4.Rectan|
|00000c40| 67 75 6c 61 72 20 53 6f | 6c 69 64 2c 20 56 6f 6c |gular So|lid, Vol|
|00000c50| 75 6d 65 20 6f 66 20 61 | 0f 0d 0a 00 10 31 2d 33 |ume of a|.....1-3|
|00000c60| 2d 31 0e 73 31 2d 33 2d | 36 0e 52 65 64 20 48 65 |-1.s1-3-|6.Red He|
|00000c70| 72 72 69 6e 67 0f 0d 0a | 00 10 31 2d 34 2d 31 0e |rring...|..1-4-1.|
|00000c80| 73 31 2d 34 2d 32 0e 52 | 65 70 65 61 74 65 64 20 |s1-4-2.R|epeated |
|00000c90| 53 6f 6c 75 74 69 6f 6e | 0f 0d 0a 00 10 31 2d 37 |Solution|.....1-7|
|00000ca0| 2d 31 0e 73 31 2d 37 2d | 31 0e 53 61 74 69 73 66 |-1.s1-7-|1.Satisf|
|00000cb0| 79 20 61 6e 20 49 6e 65 | 71 75 61 6c 69 74 79 0f |y an Ine|quality.|
|00000cc0| 0d 0a 00 10 31 2d 34 2d | 31 0e 73 31 2d 34 2d 31 |....1-4-|1.s1-4-1|
|00000cd0| 0e 53 65 63 6f 6e 64 2d | 44 65 67 72 65 65 20 50 |.Second-|Degree P|
|00000ce0| 6f 6c 79 6e 6f 6d 69 61 | 6c 20 45 71 75 61 74 69 |olynomia|l Equati|
|00000cf0| 6f 6e 20 69 6e 20 11 33 | 78 11 31 0f 0d 0a 00 10 |on in .3|x.1.....|
|00000d00| 31 2d 33 2d 31 0e 73 31 | 2d 33 2d 35 0e 53 69 6d |1-3-1.s1|-3-5.Sim|
|00000d10| 70 6c 65 20 49 6e 74 65 | 72 65 73 74 20 46 6f 72 |ple Inte|rest For|
|00000d20| 6d 75 6c 61 0f 0d 0a 00 | 10 31 2d 32 2d 31 0e 73 |mula....|.1-2-1.s|
|00000d30| 31 2d 32 2d 34 0e 53 6f | 6c 75 74 69 6f 6e 2c 20 |1-2-4.So|lution, |
|00000d40| 45 78 74 72 61 6e 65 6f | 75 73 0f 0d 0a 00 10 31 |Extraneo|us.....1|
|00000d50| 2d 31 2d 31 0e 73 31 2d | 31 2d 31 0e 53 6f 6c 75 |-1-1.s1-|1-1.Solu|
|00000d60| 74 69 6f 6e 20 50 6f 69 | 6e 74 20 6f 66 20 61 6e |tion Poi|nt of an|
|00000d70| 20 45 71 75 61 74 69 6f | 6e 0f 0d 0a 00 10 31 2d | Equatio|n.....1-|
|00000d80| 37 2d 31 0e 73 31 2d 37 | 2d 31 0e 53 6f 6c 75 74 |7-1.s1-7|-1.Solut|
|00000d90| 69 6f 6e 20 53 65 74 20 | 6f 66 20 61 6e 20 49 6e |ion Set |of an In|
|00000da0| 65 71 75 61 6c 69 74 79 | 0f 0d 0a 00 10 31 2d 34 |equality|.....1-4|
|00000db0| 2d 31 0e 73 31 2d 34 2d | 37 0e 53 6f 6c 75 74 69 |-1.s1-4-|7.Soluti|
|00000dc0| 6f 6e 73 20 6f 66 20 61 | 20 51 75 61 64 72 61 74 |ons of a| Quadrat|
|00000dd0| 69 63 20 45 71 75 61 74 | 69 6f 6e 0f 0d 0a 00 10 |ic Equat|ion.....|
|00000de0| 31 2d 32 2d 31 0e 73 31 | 2d 32 2d 31 0e 53 6f 6c |1-2-1.s1|-2-1.Sol|
|00000df0| 75 74 69 6f 6e 73 20 6f | 66 20 61 6e 20 45 71 75 |utions o|f an Equ|
|00000e00| 61 74 69 6f 6e 0f 0d 0a | 00 10 31 2d 37 2d 31 0e |ation...|..1-7-1.|
|00000e10| 73 31 2d 37 2d 31 0e 53 | 6f 6c 75 74 69 6f 6e 73 |s1-7-1.S|olutions|
|00000e20| 20 6f 66 20 61 6e 20 49 | 6e 65 71 75 61 6c 69 74 | of an I|nequalit|
|00000e30| 79 0f 0d 0a 00 10 31 2d | 37 2d 31 0e 73 31 2d 37 |y.....1-|7-1.s1-7|
|00000e40| 2d 33 0e 53 6f 6c 76 69 | 6e 67 20 61 20 44 6f 75 |-3.Solvi|ng a Dou|
|00000e50| 62 6c 65 20 49 6e 65 71 | 75 61 6c 69 74 79 0f 0d |ble Ineq|uality..|
|00000e60| 0a 00 10 31 2d 37 2d 31 | 0e 73 31 2d 37 2d 33 0e |...1-7-1|.s1-7-3.|
|00000e70| 53 6f 6c 76 69 6e 67 20 | 61 20 4c 69 6e 65 61 72 |Solving |a Linear|
|00000e80| 20 49 6e 65 71 75 61 6c | 69 74 79 0f 0d 0a 00 10 | Inequal|ity.....|
|00000e90| 31 2d 34 2d 31 0e 73 31 | 2d 34 2d 34 0e 53 6f 6c |1-4-1.s1|-4-4.Sol|
|00000ea0| 76 69 6e 67 20 61 20 51 | 75 61 64 72 61 74 69 63 |ving a Q|uadratic|
|00000eb0| 20 45 71 75 61 74 69 6f | 6e 20 62 79 20 43 6f 6d | Equatio|n by Com|
|00000ec0| 70 6c 65 74 69 6e 67 20 | 74 68 65 20 53 71 75 61 |pleting |the Squa|
|00000ed0| 72 65 0f 0d 0a 00 10 31 | 2d 34 2d 31 0e 73 31 2d |re.....1|-4-1.s1-|
|00000ee0| 34 2d 33 0e 53 6f 6c 76 | 69 6e 67 20 61 20 51 75 |4-3.Solv|ing a Qu|
|00000ef0| 61 64 72 61 74 69 63 20 | 45 71 75 61 74 69 6f 6e |adratic |Equation|
|00000f00| 20 62 79 20 45 78 74 72 | 61 63 74 69 6e 67 20 53 | by Extr|acting S|
|00000f10| 71 75 61 72 65 20 52 6f | 6f 74 73 0f 0d 0a 00 10 |quare Ro|ots.....|
|00000f20| 31 2d 34 2d 31 0e 73 31 | 2d 34 2d 32 0e 53 6f 6c |1-4-1.s1|-4-2.Sol|
|00000f30| 76 69 6e 67 20 61 20 51 | 75 61 64 72 61 74 69 63 |ving a Q|uadratic|
|00000f40| 20 45 71 75 61 74 69 6f | 6e 20 62 79 20 46 61 63 | Equatio|n by Fac|
|00000f50| 74 6f 72 69 6e 67 0f 0d | 0a 00 10 31 2d 37 2d 31 |toring..|...1-7-1|
|00000f60| 0e 73 31 2d 37 2d 34 0e | 53 6f 6c 76 69 6e 67 20 |.s1-7-4.|Solving |
|00000f70| 61 6e 20 41 62 73 6f 6c | 75 74 65 20 56 61 6c 75 |an Absol|ute Valu|
|00000f80| 65 20 49 6e 65 71 75 61 | 6c 69 74 79 0f 0d 0a 00 |e Inequa|lity....|
|00000f90| 10 31 2d 32 2d 31 0e 73 | 31 2d 32 2d 31 0e 53 6f |.1-2-1.s|1-2-1.So|
|00000fa0| 6c 76 69 6e 67 20 61 6e | 20 45 71 75 61 74 69 6f |lving an| Equatio|
|00000fb0| 6e 0f 0d 0a 00 10 31 2d | 37 2d 31 0e 73 31 2d 37 |n.....1-|7-1.s1-7|
|00000fc0| 2d 31 0e 53 6f 6c 76 69 | 6e 67 20 61 6e 20 49 6e |-1.Solvi|ng an In|
|00000fd0| 65 71 75 61 6c 69 74 79 | 0f 0d 0a 00 10 31 2d 38 |equality|.....1-8|
|00000fe0| 2d 31 0e 73 31 2d 38 2d | 33 0e 53 6f 6c 76 69 6e |-1.s1-8-|3.Solvin|
|00000ff0| 67 20 61 6e 20 49 6e 65 | 71 75 61 6c 69 74 79 20 |g an Ine|quality |
|00001000| 49 6e 76 6f 6c 76 69 6e | 67 20 52 61 74 69 6f 6e |Involvin|g Ration|
|00001010| 61 6c 20 45 78 70 72 65 | 73 73 69 6f 6e 73 0f 0d |al Expre|ssions..|
|00001020| 0a 00 10 31 2d 36 2d 31 | 0e 73 31 2d 36 2d 33 0e |...1-6-1|.s1-6-3.|
|00001030| 53 6f 6c 76 69 6e 67 20 | 45 71 75 61 74 69 6f 6e |Solving |Equation|
|00001040| 73 20 49 6e 76 6f 6c 76 | 69 6e 67 20 41 62 73 6f |s Involv|ing Abso|
|00001050| 6c 75 74 65 20 56 61 6c | 75 65 0f 0d 0a 00 10 31 |lute Val|ue.....1|
|00001060| 2d 36 2d 31 0e 73 31 2d | 36 2d 33 0e 53 6f 6c 76 |-6-1.s1-|6-3.Solv|
|00001070| 69 6e 67 20 45 71 75 61 | 74 69 6f 6e 73 20 49 6e |ing Equa|tions In|
|00001080| 76 6f 6c 76 69 6e 67 20 | 46 72 61 63 74 69 6f 6e |volving |Fraction|
|00001090| 73 0f 0d 0a 00 10 31 2d | 36 2d 31 0e 73 31 2d 36 |s.....1-|6-1.s1-6|
|000010a0| 2d 32 0e 53 6f 6c 76 69 | 6e 67 20 45 71 75 61 74 |-2.Solvi|ng Equat|
|000010b0| 69 6f 6e 73 20 49 6e 76 | 6f 6c 76 69 6e 67 20 52 |ions Inv|olving R|
|000010c0| 61 64 69 63 61 6c 73 0f | 0d 0a 00 10 31 2d 36 2d |adicals.|....1-6-|
|000010d0| 31 0e 73 31 2d 36 2d 32 | 0e 53 6f 6c 76 69 6e 67 |1.s1-6-2|.Solving|
|000010e0| 20 45 71 75 61 74 69 6f | 6e 73 20 49 6e 76 6f 6c | Equatio|ns Invol|
|000010f0| 76 69 6e 67 20 52 61 74 | 69 6f 6e 61 6c 20 45 78 |ving Rat|ional Ex|
|00001100| 70 6f 6e 65 6e 74 73 0f | 0d 0a 00 10 31 2d 33 2d |ponents.|....1-3-|
|00001110| 31 0e 73 31 2d 33 2d 34 | 0e 53 70 68 65 72 65 2c |1.s1-3-4|.Sphere,|
|00001120| 20 56 6f 6c 75 6d 65 20 | 6f 66 20 61 0f 0d 0a 00 | Volume |of a....|
|00001130| 10 31 2d 33 2d 31 0e 73 | 31 2d 33 2d 33 0e 53 71 |.1-3-1.s|1-3-3.Sq|
|00001140| 75 61 72 65 2c 20 41 72 | 65 61 20 61 6e 64 20 50 |uare, Ar|ea and P|
|00001150| 65 72 69 6d 65 74 65 72 | 20 6f 66 20 61 0f 0d 0a |erimeter| of a...|
|00001160| 00 10 31 2d 34 2d 31 0e | 73 31 2d 34 2d 31 0e 53 |..1-4-1.|s1-4-1.S|
|00001170| 74 61 6e 64 61 72 64 20 | 46 6f 72 6d 20 6f 66 20 |tandard |Form of |
|00001180| 61 20 51 75 61 64 72 61 | 74 69 63 20 45 71 75 61 |a Quadra|tic Equa|
|00001190| 74 69 6f 6e 0f 0d 0a 00 | 10 31 2d 31 2d 31 0e 73 |tion....|.1-1-1.s|
|000011a0| 31 2d 31 2d 35 0e 53 74 | 61 6e 64 61 72 64 20 46 |1-1-5.St|andard F|
|000011b0| 6f 72 6d 20 6f 66 20 74 | 68 65 20 45 71 75 61 74 |orm of t|he Equat|
|000011c0| 69 6f 6e 20 6f 66 20 61 | 20 43 69 72 63 6c 65 0f |ion of a| Circle.|
|000011d0| 0d 0a 00 10 31 2d 35 2d | 31 0e 73 31 2d 35 2d 32 |....1-5-|1.s1-5-2|
|000011e0| 0e 53 75 62 74 72 61 63 | 74 69 6f 6e 20 6f 66 20 |.Subtrac|tion of |
|000011f0| 43 6f 6d 70 6c 65 78 20 | 4e 75 6d 62 65 72 73 0f |Complex |Numbers.|
|00001200| 0d 0a 00 10 31 2d 31 2d | 31 0e 73 31 2d 31 2d 34 |....1-1-|1.s1-1-4|
|00001210| 0e 53 79 6d 6d 65 74 72 | 79 20 6f 66 20 61 20 47 |.Symmetr|y of a G|
|00001220| 72 61 70 68 0f 0d 0a 00 | 10 31 2d 31 2d 31 0e 73 |raph....|.1-1-1.s|
|00001230| 31 2d 31 2d 34 0e 53 79 | 6d 6d 65 74 72 79 20 77 |1-1-4.Sy|mmetry w|
|00001240| 69 74 68 20 52 65 73 70 | 65 63 74 20 74 6f 20 74 |ith Resp|ect to t|
|00001250| 68 65 20 4f 72 69 67 69 | 6e 0f 0d 0a 00 10 31 2d |he Origi|n.....1-|
|00001260| 31 2d 31 0e 73 31 2d 31 | 2d 34 0e 53 79 6d 6d 65 |1-1.s1-1|-4.Symme|
|00001270| 74 72 79 20 77 69 74 68 | 20 52 65 73 70 65 63 74 |try with| Respect|
|00001280| 20 74 6f 20 74 68 65 20 | 11 33 78 11 31 2d 61 78 | to the |.3x.1-ax|
|00001290| 69 73 0f 0d 0a 00 10 31 | 2d 31 2d 31 0e 73 31 2d |is.....1|-1-1.s1-|
|000012a0| 31 2d 34 0e 53 79 6d 6d | 65 74 72 79 20 77 69 74 |1-4.Symm|etry wit|
|000012b0| 68 20 52 65 73 70 65 63 | 74 20 74 6f 20 74 68 65 |h Respec|t to the|
|000012c0| 20 11 33 79 11 31 2d 61 | 78 69 73 0f 0d 0a 00 10 | .3y.1-a|xis.....|
|000012d0| 31 2d 33 2d 31 0e 73 31 | 2d 33 2d 35 0e 54 65 6d |1-3-1.s1|-3-5.Tem|
|000012e0| 70 65 72 61 74 75 72 65 | 20 46 6f 72 6d 75 6c 61 |perature| Formula|
|000012f0| 0f 0d 0a 00 10 31 2d 31 | 2d 31 0e 73 31 2d 31 2d |.....1-1|-1.s1-1-|
|00001300| 34 0e 54 65 73 74 20 66 | 6f 72 20 4f 72 69 67 69 |4.Test f|or Origi|
|00001310| 6e 20 53 79 6d 6d 65 74 | 72 79 0f 0d 0a 00 10 31 |n Symmet|ry.....1|
|00001320| 2d 31 2d 31 0e 73 31 2d | 31 2d 34 0e 54 65 73 74 |-1-1.s1-|1-4.Test|
|00001330| 20 66 6f 72 20 11 33 78 | 11 31 2d 61 78 69 73 20 | for .3x|.1-axis |
|00001340| 53 79 6d 6d 65 74 72 79 | 0f 0d 0a 00 10 31 2d 31 |Symmetry|.....1-1|
|00001350| 2d 31 0e 73 31 2d 31 2d | 34 0e 54 65 73 74 20 66 |-1.s1-1-|4.Test f|
|00001360| 6f 72 20 11 33 79 11 31 | 2d 61 78 69 73 20 53 79 |or .3y.1|-axis Sy|
|00001370| 6d 6d 65 74 72 79 0f 0d | 0a 00 10 31 2d 38 2d 31 |mmetry..|...1-8-1|
|00001380| 0e 73 31 2d 38 2d 31 0e | 54 65 73 74 20 49 6e 74 |.s1-8-1.|Test Int|
|00001390| 65 72 76 61 6c 73 0f 0d | 0a 00 10 31 2d 38 2d 31 |ervals..|...1-8-1|
|000013a0| 0e 73 31 2d 38 2d 32 0e | 54 65 73 74 20 49 6e 74 |.s1-8-2.|Test Int|
|000013b0| 65 72 76 61 6c 73 20 66 | 6f 72 20 61 20 50 6f 6c |ervals f|or a Pol|
|000013c0| 79 6e 6f 6d 69 61 6c 2c | 20 46 69 6e 64 69 6e 67 |ynomial,| Finding|
|000013d0| 0f 0d 0a 00 10 31 2d 37 | 2d 31 0e 73 31 2d 37 2d |.....1-7|-1.s1-7-|
|000013e0| 32 0e 54 72 61 6e 73 69 | 74 69 76 65 20 50 72 6f |2.Transi|tive Pro|
|000013f0| 70 65 72 74 79 0f 0d 0a | 00 10 31 2d 33 2d 31 0e |perty...|..1-3-1.|
|00001400| 73 31 2d 33 2d 32 0e 54 | 72 61 6e 73 6c 61 74 69 |s1-3-2.T|ranslati|
|00001410| 6e 67 20 4b 65 79 20 57 | 6f 72 64 73 20 61 6e 64 |ng Key W|ords and|
|00001420| 20 50 68 72 61 73 65 73 | 0f 0d 0a 00 10 31 2d 33 | Phrases|.....1-3|
|00001430| 2d 31 0e 73 31 2d 33 2d | 33 0e 54 72 69 61 6e 67 |-1.s1-3-|3.Triang|
|00001440| 6c 65 2c 20 41 72 65 61 | 20 6f 66 20 61 0f 0d 0a |le, Area| of a...|
|00001450| 00 10 31 2d 34 2d 31 0e | 73 31 2d 34 2d 37 0e 55 |..1-4-1.|s1-4-7.U|
|00001460| 73 69 6e 67 20 74 68 65 | 20 44 69 73 63 72 69 6d |sing the| Discrim|
|00001470| 69 6e 61 6e 74 20 74 6f | 20 50 72 65 64 69 63 74 |inant to| Predict|
|00001480| 20 53 6f 6c 75 74 69 6f | 6e 73 0f 0d 0a 00 10 31 | Solutio|ns.....1|
|00001490| 2d 33 2d 31 0e 73 31 2d | 33 2d 31 0e 56 65 72 62 |-3-1.s1-|3-1.Verb|
|000014a0| 61 6c 20 4d 6f 64 65 6c | 0f 0d 0a 00 10 31 2d 33 |al Model|.....1-3|
|000014b0| 2d 31 0e 73 31 2d 33 2d | 34 0e 56 6f 6c 75 6d 65 |-1.s1-3-|4.Volume|
|000014c0| 20 46 6f 72 6d 75 6c 61 | 73 0f 0d 0a 00 10 31 2d | Formula|s.....1-|
|000014d0| 31 2d 31 0e 73 31 2d 31 | 2d 34 0e 11 33 78 11 31 |1-1.s1-1|-4..3x.1|
|000014e0| 2d 61 78 69 73 20 53 79 | 6d 6d 65 74 72 79 0f 0d |-axis Sy|mmetry..|
|000014f0| 0a 00 10 31 2d 31 2d 31 | 0e 73 31 2d 31 2d 33 0e |...1-1-1|.s1-1-3.|
|00001500| 11 33 78 11 31 2d 69 6e | 74 65 72 63 65 70 74 0f |.3x.1-in|tercept.|
|00001510| 0d 0a 00 10 31 2d 31 2d | 31 0e 73 31 2d 31 2d 34 |....1-1-|1.s1-1-4|
|00001520| 0e 11 33 79 11 31 2d 61 | 78 69 73 20 53 79 6d 6d |..3y.1-a|xis Symm|
|00001530| 65 74 72 79 0f 0d 0a 00 | 10 31 2d 31 2d 31 0e 73 |etry....|.1-1-1.s|
|00001540| 31 2d 31 2d 33 0e 11 33 | 79 11 31 2d 69 6e 74 65 |1-1-3..3|y.1-inte|
|00001550| 72 63 65 70 74 0f 0d 0b | 00 26 00 00 00 33 15 00 |rcept...|.&...3..|
|00001560| 00 4d 16 00 00 10 00 00 | 00 00 00 00 00 4d 41 49 |.M......|.....MAI|
|00001570| 4e 00 | |N. | |
+--------+-------------------------+-------------------------+--------+--------+